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Abstract

Loss of Crew (LOC) and Loss of Mission (LOM) are two key requirements the
Constellation Program (CxP) measure against. To date, one of the top risk drivers for
both LOC and LOM has been Orion's Crew Exploration Vehicle (CEV) Parachute
Assembly System (CPAS). Even though the Orion CPAS is one of the top risk drivers of
CxP, it has been very difficult to obtain any relevant data to accurately quantify the risk.

At first glance, it would seem that a parachute system would be very reliable given the
track record of Apollo and Soyuz. Given the success of those two programs, the amount
of data is considered to be statistically insignificant. However, due to CxP having
LOC/LOM as key design requirements, it was necessary for Orion to generate a valid
prior to begin the Risk Informed Design process. To do so, the Safety & Mission
Assurance (S&MA) Space Shuttle & Exploration Analysis Section generated an initial
failure probability for Orion to use in preparation for the Orion Systems Requirements
Review (SRR).



Table of Contents
1	 Introduction to NASA's Constellation Program (CxP) .............................................. 4

2	 Constellation Program (CxP) Missions ...................................................................... 5

3	 Applicable Design Reference Missions (DRMs) ........................................................ 5

3.1	 Lunar Design Reference Missions ....................................................................... 6

3.1.1	 Lunar Sortie Crew DRM ............................................................................... 6

3.1.2	 Visiting Lunar Outpost Expedition DRM ..................................................... 7

3.2	 ISS Design Reference 11issions ............................................................................ 8

3.3	 Mars DRM ............................................................................................................ 9

4	 Element	 Overviews ................................................................................................... 10

4.1	 Orion ................................................................................................................... 10

5	 Overview of the Orion CEV Parachute Assembly System (CPAS) ......................... 11

6	 Development of the Orion CPAS Main Parachute Failure Probability .................... 12

6.1	 NASA's Smart Buyer Parachute Failure Probability Estimate .......................... 13

6.2	 CxP Main Parachute Failure Probability Estimate ............................................. 13

6.2.1	 Apollo Parachute History ............................................................................ 14

6.2.2	 Soyuz Parachute History ............................................................................. 16

6.2.3	 Military Parachute Data .............................................................................. 17

6.2.4	 Space Shuttle Program (SSP) Solid Rocket Booster (SRB) Parachute
History 17

7	 Calculating the CPAS Main Parachute Prior & Posterior ........................................ 19

7.1	 Issues with the Results ....................................................................................... 21

8	 Summary ................................................................................................................... 21



Table of Figures

Figure 1: Components of the Constellation Program (CxP) .............................................. 5

Figure 2: Lunar Sortie Crew DRM .................................................................................... 7

Figure 3: Lunar Outpost - Crew DRM ............................................................................... 8

Figure4: ISS	 DRM ............................................................................................................ 9

Figure5: Expanded Orion Layout ................................................................................... 11

Figure 6: Notional LRS	 Sequence of Events ................................................................... 12

Figure 7: Apollo	 15 Main Parachute Failure ................................................................... 15

Figure8: Soyuz	 1	 Crash	 Site ........................................................................................... 16

Figure 9: Generic Military Parachute Data ...................................................................... 17

Figure10: Typical	 SRB Descent ..................................................................................... 18

Figure 11: Typical SRB Splashdown ............................................................................... 19

Figure 12: CPAS Main Parachute Prior Summary .......................................................... 20



Introduction to NASA's Constellation Program (C'XP)

The Constellation program has been established to:

- Develop a safe, affordable, reliable and sustainable system to conduct human
exploration across the solar system

- Develop an exploration system that will support an extended human mission to
the surface of the Moon no later than 2020

- Develop the capability for a sustainable and extensible permanent human
presence on the Moon for commercial, national pre-eminence and scientific
purposes leading to future exploration of Mars and beyond

- Establish a capability to conduct human expeditions to Mars and beyond.

The CxP Office is developing, integrating, and evolving an architecture to accomplish
these needs and goals. The Cx Architecture is currently comprised of spacecraft, launch
vehicles, support systems, and destination systems to further these space exploration
goals. The Cx Architecture also has several key external interfaces that are critical to the
success of Cx missions. Figure 1 illustrates which Cx elements are utilized for the ISS
and Lunar missions. i

' Constellation Program Oven-new, October, 2006, Jolm F. Connolly, Constellation Program Office,
National Aeronautics & Space Administration (NASA)



Figure 1: Components of the Constellation Program (CxP)

2	 Constellation Program (('xP) Missions

The CxP missions fall into three general categories: missions to the International Space
Station (ISS), missions to the Moon, and missions to Mars. The ISS missions consist of
ISS crew rotation missions. The Lunar missions demonstrate the capability of the
architecture to transport and land humans on the Moon, operate for a limited period on
the surface, and safely return them to Earth. Lunar missions also allow for exploration of
high-interest science sites or scouting of future Lunar Outpost locations. The Mars
missions will demonstrate the capability of the architecture to transport and land humans
on Mars, operate for a limited period on the surface, and safely return them to Earth.'

Applicable Design Reference Missions (DRMs)

The following sections briefly describe each of the applicable CxP DRMs that were
planned as of the beginning of the program. There are three major DRMs: the ISS
Crewed DRM, the Lunar DRMs, and the Mars DRM. The Lunar DRMs contain three
variations: the Lunar Sortie DRM, the Lunar Outpost DRM, and the Lunar Cargo DRM.
Of these three DRMs, the Lunar Cargo DRM would not utilize the Orion spacecraft.

'` Constellation Program Overview, October, 2006, John F. Connolly, Constellation Program Office,
National Aeronautics & Space Administration (NASA)



Thus, the Lunar Cargo DRM would not be applicable in terms of having the Orion CPAS
operate.

3.1	 Lunar Design Reference Missions

3.1.1 Lunar Sortie Crew DRM

Lunar Sortie missions are representative of missions that enable up to four crewmembers
to explore a single site anywhere on the Moon with the length of stay limited by the
amount of consumables brought by Altair, the Lunar Lander, and Delta-V margins. This
type of mission is accomplished independent of pre-positioned lunar surface
infrastructure such as habitats or power stations. A Lunar Sortie mission may occur at
any time during the CxP Lunar Campaign. The Lunar Sortie mission allows for
exploration of high-interest science sites, scouting of future Lunar Outpost locations, or
other technology development objectives within the capabilities of the available lunar
surface infrastructure. During a sortie, the crew has the capability to perform daily
Extravehicular Activities (EVAs).

A Lunar Sortie mission utilizes the following elements for a mission: Ares I, Orion, Ares
V, Lander, Mission Systems (MS), Ground Systems (GS), EVA and Portable Equipment.
The ascent mission mode for the Lunar Sortie mission is a combination Earth
Rendezvous Orbit and Lunar Rendezvous Orbit (ERO-LRO) architecture. The
Altair/Earth Departure Stage (EDS) is inserted into ERO with a single Ares V launch
followed within 90 minutes by an Ares I launch of the crew and cargo aboard the Orion.
Orion and Altair/EDS then rendezvous and dock in ERO. The crew may enter Altair prior
to Trans-Lunar Injection/Lunar Orbit Insertion (TLI/LOI). The EDS performs the TLI
burn for Altair and Orion and then separates from the stack. The EDS maneuvers to target
for a safe disposal away from the Orion/Altair path or any future spacecraft missions.
Altair performs any required mid-course correction maneuvers during the trans-lunar
cruise. Upon reaching the Moon, Altair then performs the LOI for the two mated
elements. Figure 2 illustrates the Lunar Sortie Crew mission. Although this DRM
represents the current baseline Lunar Sortie mission, the architecture developed to
support this DRM should not preclude the capability to accomplish a Lunar Sortie with a
single launch of both crew and cargo on the Ares V.3

3 Constellation Program. (March 21, 2010). In Wikipedia. Retrieved March 30, 2010 from
http://en.wikipedia.orQ/wiki/Constellation grogram#Missions
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Figure 2: Lunar Sortie Crew DRNT

3.1.2 Visiting Lunar Outpost Expedition DRM

The Visiting Lunar Outpost Expedition DRM is representative of a mission with a crew
size up to four, where the crew is dependent on the resources from Altair to survive for
the duration of the mission; however, as available, some resources from Lunar Surface
Systems (LSS) may be used to extend the length of the surface stay. This mission is
intended to perform tasks at a Lunar Outpost site that utilize a human's expertise,
dexterity, realtime evaluation and ability to improvise. These missions would conceivably
be used to construct a Lunar Outpost, or provide needed logistics or repairs to an existing
Outpost.

Crew size is determined by the surface operations that are required to accomplish mission
objectives. If the crew consists of fewer than four crewmembers, the mass saved may be
replaced by additional equipment or small cargo needed for the surface mission. The
delivery of cargo on the same vehicle as the crew provides flexibility and optimization to
the Outpost constriction schedule. These missions incrementally build upon useful
infrastructure left behind after the completion of previous missions. The duration of crew
surface time for this DRM will vary depending on the Outpost construction and
payload/technology objectives.

A Visiting Lunar Outpost Expedition mission utilizes the following systems for a
mission: Ares I, Orion, Ares V, Lander, MS, GS, EVA, LSS and Portable Equipment.
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The ascent mission mode for the Lunar Outpost Crew mission, just like the Lunar Sortie
mission, is a combination ERO-LRO architecture. Altair is pre-deployed with a single
Ares V launch to ERO followed within 90 minutes by an Ares I launch of the crew and
cargo aboard the Orion. Orion and Altair/EDS then rendezvous and dock in ERO. Figure
4, Lunar Outpost DRM, illustrates the Lunar Outpost Crew mission. Robotic systems
perform the function of off-loading crew task overhead and performing activities that
would otherwise impact the productivity or safety of the crew.4
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Figure 3: Lunar Outpost - Crew DRM

3.2	 ISS Design Reference Missions

The ISS DRM supports ISS increment crew rotation and re-supply of the ISS. ISS
missions provide a proving ground for Constellations systems while at the same time
providing an alternate resource for the support of ISS crewed operations. The presence of
a quiescent Orion at the ISS should be included and that the existing ISS crew returns to
Earth in the Orion that brought them to the ISS, not in the Orion that brings the
replacement crew.

4 Constellation Program. (March 21, 2010). In Wikipedia. Retrieved March 30, 2010 from
ht^://en.wiki^edia.or^wiki/Constellation programWissionsen.wiki^edia.or^wiki/Constellation program#Missions
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An ISS mission utilizes the following systems for a mission: Ares I, Orion, MS, GS, and
Portable Equipment. After separating from the Ares I, Orion performs orbit raising burns
per a pre-mission-defined rendezvous phasing profile, modified as necessary to account
for actual trajectory conditions, to close in on the ISS. These will be a combination of
ground-targeted and onboard-targeted burns, the latter performed once rendezvous
navigation sensors acquire the ISS. Any EVA contingency operations originate from the
ISS, using ISS resources. The ISS mission involves the launch of Ares I into a 51.6
degree inclination orbit with a crew of three to six destined for a 6-month ISS expedition.
Figure 5 illustrates the ISS mission.5
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3.3 Mars DRM

The Mars Design Reference Mission employs conjunction-class missions, often referred
to as long-stay missions, to minimize the exposure of the crew to the deep-space radiation
and zero-gravity environment while at the same time maximizing the scientific return
from the mission. This is accomplished by taking advantage of optimum alignment of the
Earth and Mars for both the outbound and return trajectories by varying the stay time on
Mars, rather than forcing the mission through non-optimal trajectories as in the case of

5 Constellation Program. (March 21, 2010). In Wikipedia. Retrieved March 30, 2010 from
http://en.wikipedia.orQ/wiki/Constellation grogram#Missions



the short-stay missions. This approach allows the crew to transfer to and from Mars on
relatively fast trajectories, on the order of six months, while allowing them to stay on the
surface of Mars for a majority of the mission, on the order of 18 months. The working
assumption for crew size is six, based on previous analysis. The surface exploration
capability is implemented through a split mission concept in which cargo is transported in
manageable units to the surface, or Mars orbit, and checked out in advance of committing
the crews to their mission. The split mission approach also allows the crew to be
transported on faster, more energetic trajectories, minimizing their exposure to the deep-
space environment, while the vast majority of the material sent to Mars is sent on
minimum energy trajectories. Emphasis is placed on ensuring that the space
transportation systems are designed to be flown in any Mars injection opportunity. This is
vital in order to minimize the programmatic risks associated with funding profiles,
technology development, and system design and verification programs.')

4	 Element Overviews

4.1	 Orion

The Orion System consists of a Crew Module (CM), a Service Module (SM), a Launch
Abort System (LAS), and a Spacecraft Adapter (SA), and transports crew and cargo to
orbit and back. The Orion System will be used in all phases of the CxP. Initially, the
Orion transports crew to and from the ISS. It will subsequently transport crew and cargo
to and from a lunar orbit for short and extended duration missions. Finally, the Orion or a
derivative will support missions to a Mars Transfer Vehicle, and then return the crew and
cargo to Earth after separation from the vehicle. There may be unique configurations to
accommodate the needs of each defined DRM.

Orion is the spacecraft used to transfer flight crews, cargo, and support equipment from
Earth to Low Earth Orbit (LEO) or lunar orbit, and subsequently return the crew to
Earth's surface. For a lunar mission, the Orion must first rendezvous with the Earth
Departure Stage (EDS)/Altair which will be loitering in LEO. For the trans-lunar portion
of the mission the Trans-Lunar Injection (TLI) burn will be performed by the EDS.
Subsequent course correction maneuvers will be performed by Altair. In conjunction with
Altair and EDS, the Orion delivers the flight crew to Low Lunar Orbit (LLO) and
subsequently loiters there without crew onboard while the lunar surface expedition is
performed. After returning to orbit with Altair, the crew transfers back to the Orion, and
the Orion returns the crew to Earth.

The Orion is comprised of four distinct modules: a Launch Abort System (LAS), a Crew
Module (CM), a Service Module (SM), and a Spacecraft Adapter (SA). These modules
are seen from left to right in Figure 7.6

6 Constellation Program and Project Overview. Kenneth S. Reightler, Vice President; NASA Program
Integration. Lockheed Martin Space Systems Company. November 6, 2007- Retrieved March 30, 2010
from www.californiaspaceauthority.orc_,i.../071106-1300-ReiQhtler.pdf
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5	 Overview of the Orion CEV Parachute Assembly System (CPAS)

Prior to the Orion SRR, the Orion CPAS was comprised of three major components: the
Forward Bay Cover (FBC), two Drogue parachutes, and three Main parachutes. All
components of the Orion CPAS are located in the Forward Bay of the Crew Module
(CM).

The purpose of the FBC is to protect the entire Landing & Recovery System (LRS)
components through all phases of the mission. Prior to deployment of the Drogue
parachutes, the FBC is jettisoned by deploying two Pilot parachutes. Each of the FBC
Pilot parachutes are deployed via mortars.

Post-FBC jettison, the two Drogue parachutes were to then be deployed simultaneously
via mortars. Each Drogue parachute possessed a single stage of reefing to help manage
the aerodynamic loads imposed on the parachutes. After each Drogue parachute
completed their respective reefs, they would be used to decelerate and stabilize the Orion
Crew Module (CM). Once the CM became stable and achieved a desired dynamic
pressure necessary for the Main parachute deployment, the two Drogue parachutes would
then be released by pyrotechnic-initiated cutters.

After the Drogue parachutes were released, three Pilot parachutes would simultaneously
be deployed via mortars. After the Pilot parachutes inflate, they would independently

' Constellation Program and Project Overview. Kenneth S. Reightler, Vice President; NASA Program
Integration. Lockheed Martin Space Systems Company. November 6, 2007- Retrieved March 30, 2010
from www.californiaspaceauthority.orc_,i ... i071106-1300-Reightler.pdf



extract each of the Main parachutes from the CM Forward Bay. As with the Drogue
parachutes, the Main parachutes were also reefed to help manage the loads. However,
the lone difference between the two was that the Main parachutes had two reefing stages
as opposed to one for the Drogue parachutes. When the Main parachutes attained frill
inflation, they would remain attached to the CM until landing either on water or land.
Once the CM lands, the three Main parachutes would then be released via pyrotechnic-
initiated cutters. 8
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Figure 6: Notional LRS Sequence of Events'

6	 Development of the Orion CPAS Main Parachute Failure Probability

As part of the Orion Risk Informed Design (RID) process, LOC/LOM probabilities were
a key figure of merit used to determine how much system redundancy to place on the
vehicle. With human-rated spacecraft, the majority of the systems tend to be similar.
Thus, the data used to generate the Orion LOC/LOM probabilities were primarily
heritage based numbers from the Space Shuttle Program (SSP) and the International
Space Station (ISS) program. Given that Lockheed Martin did not have many of the

8 Constellation Program. (March 21, 2010). In Wikipedia. Retrieved March 30, 2010 from
http://en.wikipedia.ora,'wiki/Constellation t)rogram#Missions
'http://www.nasa.;7ov/images/contentr156.596main Orion Sequence 500.1t)^



Orion spacecraft vendors under contract at the beginning of the RID process, the project
agreed to use SSP and ISS heritage based data.

This worked well for many of the Orion system and subsystem trades. However, there
were some systems/subsystems that Orion had in their current design that SSP, ISS, or
both did not utilize. One of the more obvious subsystem differences was that of the
Landing & Recovery System (LRS). Obviously, the ISS does not have a LRS since it is
a permanent fixture in Low Earth Orbit (LEO). Since the Orbiter is considered to be a
reusable spacecraft, it must have the capability to return to Earth and therefore has a LRS.
However, the main difference between the Orbiter and Orion is how each spacecraft
lands.

The Orbiter lands very similarly as to how an airplane does. After the Orbiter re-enters
the atmosphere, it basically utilizes its two wings and elevons to glide down to the
Primary Landing Site (PLS) ninway. Once the Orbiter approaches the PLS, the landing
gear is deployed. After touchdown, a Drag Parachute is deployed from the aft part of the
Orbiter to help decrease its speed after touchdown. Orion's basic design does not include
any type of wings as it is a capsule. Thus, Orion has no capability to guide the vehicle to
a specific landing site after entry. Once Orion has re-entered the Earth's atmosphere and
achieved a certain speed and dynamic pressure, parachutes are used to slow Orion to a
safe velocity for landing. Due to the large differences in the Orbiter and Orion landing
systems, Orion Safety & Mission Assurance (S&MA) Analysis Section personnel were
asked to help develop an initial failure probability for the Orion CPAS Main Parachute.
The following sections detail the data used in developing the CPAS main parachute
failure probability.

	

6.1	 NASA's Smart Buyer Parachute Failure Probability Estimate

In January, 2006, the Crew Exploration Vehicle (CEV) Smart Buyer Design effort was
chartered to develop an in-house design of the CEV. The in-house design was used by
the CEV Project to assess driving requirements and alternatives. To accomplish this task,
an Agency-wide team was assembled with representatives from all ten NASA Centers
and from NASA Headquarters. Due to the short duration of the design effort, the Smart
Buyer Team (SBT) concentrated on a limited number of trade study areas. Included as
one of the selected trade areas, was the Landing and Recovery System (LRS). As part of
the Smart Buyer Design effort, trade studies were conducted on the reliability of the LRS.
As a result of the SBD effort, a failure probability for the CEV main parachutes was
developed. The resultant failure probability was used by NASA to help generate
requirements for the following year. 10 Actual data and results of the SBT parachute
failure probability are not included in this paper due to Export Control policy at NASA.

	

6.2	 CxP Main Parachute Failure Probability Estimate

10 NASA Engineering & Safety Center (NESC) Supporting the Constellation Program. NESC Update:
Volume 4. August 2006-



In 2007, after the Smart Buyer Design effort ended, the CxP began to develop
preliminary LOC/LOM estimates for the Lunar Sortie and IS  Crewed Design Reference
Missions (DRMs). In both DRMs, the Orion spacecraft is utilized which implies the
CPAS must operate in order to complete either DRM successfully. In these preliminary
stages of evaluating LOC/LOM, analysis personnel adopted the parachute failure
probability that was developed by the SBT. This was due in large part to limited
resources and a very demanding schedule. However, after consulting with CPAS
engineering personnel and Orion LRS personnel, it was decided that the SBT parachute
failure probability was not very representative of the Orion CPAS main parachutes.
Thus, it was collectively agreed to that NASA S&MA Analysis Section personnel would
develop a new failure probability for the Orion CPAS main parachutes.

Instead of using Jeffrey's Non-Informative Prior, CxP Analysis personnel chose to
develop the main parachute prior based on Apollo, Soyuz, and Military data. This was
due to the fact that the majority of the data had been recorded in roughly the same time
period. Once the prior was established in the form of a Beta distribution, it would then be
Bayesian updated with the more recent Space Shuttle SRB parachute data using the Beta-
Binomial conjugate pair. The following sections detail the data used in that process.

6.2.1 Apollo Parachute History
During the Apollo Program, there were a total of fifteen launches. Eleven of those
launches were for a lunar mission and four launches for non-lunar missions. The four
non-lunar missions included three to Skylab and one for the Apollo-Soyuz Test Program
(ASTP). Each of the fifteen Apollo missions used three main parachutes. This resulted
in a total of forty-five demands (15 missions x 3 main parachutes per mission). Out of
those fifteen Apollo missions and forty-five demands, there was only one documented
parachute failure. That failure occurred during the descent portion of the Apollo 15
mission.I l

During the descent portion of the Apollo 15 mission, the three main parachutes had
operated properly starting at 3,050 meters and had frilly reefed. At approximately 1,825
meters, one of the three main parachute canopies collapsed. This left the Apollo 15
Command Module (CM) with two functioning parachutes. Fortunately, the CM was able
to safely land with two of the three main parachutes functioning. The lone parachute
canopy that collapsed was never recovered so the exact cause of failure is not exactly
known. However, after inspecting one of the two main parachutes that functioned, it was
discovered the Reaction Control System (RCS) may be to blame.

11 Apollo Lunar Surface Journal, Mission Report, Part 6. http://history.nasa.Qov/alsj/frame.html



Figure 7: Apollo 15 Main Parachute Failure

Once other possible failure modes were riled out, it was concluded that RCS fuel was
dumped after the main parachutes were fully inflated. A portion of the RCS fuel dump
was ignited as it was being expelled and made contact with some of the main parachute
riser and suspension lines. This resulted in the riser and suspension lines melting causing
the canopy collapse. This failure did not occur to any previous Apollo flights simply
because of the main parachute locations during the RCS fiiel expulsion. Apollo 15 just
happened to have one of the three main parachutes located directly above the RCS
engines during this exercise. As a result of the findings, NASA made both material and
procedural changes to avoid any potential catastrophic failures in the future. These
known changes made to the Apollo parachute system allowed for the analysts to discount



the failure by 90%. Instead of counting a full failure, only .1 failures were counted
towards the Apollo parachute data. 12

6.2.2 Soyuz Parachute History
Between the end of the Smart Buyer Design and CxP developing a new main parachute
prior, Soyuz had an additional six launches. Combining these six additional launches
with the ninety-three that the SBT considered, CxP assessed a total of ninety-nine Soyuz
launches. Of the ninety-nine launches there was only one failure. That failure occurred
on Soyuz 1 in 1967.

rtgure a: 3oyuz i %_,rasn mite
Re-entry of Soyuz 1 was successful as was the deployment of the drogue parachute.
However, due to a pressure sensor failure, the main parachute did not deploy. After the
main parachute failed to deploy on its own, the cosmonaut attempted to deploy the
reserve main parachute manually. The reserve main parachute deployed but was soon
entangled with the drogue parachute which had not been released. Normally, the drogue
parachute would have been released upon deployment of the main parachute. Given the
main parachute never deployed, the drogue parachute was never released. Since the
Soyuz 1 catastrophe, there have been no known fatal parachute events in the subsequent
Soyuz flights. As with the Apollo parachute data, the lone Soyuz parachute failure was
discounted. This was accomplished given the fact that there has not been a Soyuz
parachute failure since the Soyuz 1 incident. However, unlike Apollo, the Soyuz failure
was only discounted by 50% due to the lack of insight as to how the Russians were able

12 Arabian, Donald D. and Joseph E. Mechelay, "Apollo 15 Main Parachute Failure." 7"' Aerospace
Mechanical Symposium; Houston; TX: NASA Lyndon B. Johnson Space Center, 1972. P 137-148.

is Soyuz 1; http://www.astronautix.com/flights/sovuzl.htm



to fix/modify the Soyuz parachute system following the Soyuz 1 catastrophe. In this
case, only .5 failures counted towards the Soyuz parachute failure probability. 14

6.2.3 Military Parachute Data
A previous NASA Engineering & Safety Center (NESC) study concerning the Crew
Exploration Vehicle (CEV) LRS used eight years (1968-1975) of military data to help
assess the main parachute failure of probability. The military data was based on
unmanned supply drops and included both procedural and equipment failures. Only the
equipment failures were considered for calculating the main parachute prior.

TABLE 6.14 3-YEAR S U PPLY/EQUIPMENT DROP RECORD

1968 1959 .	 f970 197? 1972 1973 1974 1975
Number of Drops 23,321 15,102 17,084 15,684 7,649 6,836 5,837 5,475
Number of Malfunctions 183 126 163 86 68 90 53 70
Percentage of Malfunctions 0,78 .83 0.95 0.54 0.88 1.31 0,91 1.28
Malfunction Phases: EF	 1P EF	 !P EF	 IP EF	 IP EF	 1P EF	 IP EF	 IP EF	 IP

Extraction or Ejection 2	 91 1	 36 3 42 3	 15 0	 11 0	 13 0	 4 11	 1
Deployment Recovery 5	 76 22	 58 7	 54 6 '47 4	 43 29	 41 13	 32 32	 18
Release 0	 10 1	 8 3	 5 0	 11 2	 7 2	 5 3	 1 5	 3

EF = Equipment Failure
IP = Incorrect Procedure

Figure 9: Generic Military Parachute Data

Unfortunately, the state of knowledge regarding the military data is very low. For
instance, based on the military data below, it is unclear as to how many parachutes were
used in each drop. We also do not know if any design or material changes were
implemented to correct any of the failures. Without this knowledge, the analysts were
unable to discount any of the recorded equipment failures. However, this set of data does
provide a significant number of drops unlike the Apollo, Soyuz, or SSP SRB data.

Assuming each supply/equipment drop is equivalent to one demand, there is a total of
ninety-six thousand nine hundred eighty-eight demands over the eight year period.
During the eight year span, there were also a total of one hundred fifty-four equipment
failures. The resulting parachute failure probability over the eight year period equated to
1.6E-03.15

6.2.4 Space Shuttle Program (SSP) Solid Rocket Booster (SRB) Parachute History

Every Space Shuttle launch utilizes two Solid Rocket Boosters (SRBs) during the Ascent
portion of the mission. Each of the SRBs is equipped with a parachute system so they

14 MIR Hardware Heritage, Part 1. http://spaceflight.nasa.gov,-liistory!!, shuttle-mir!!'references!"r-
documents.htm
15 Recovery Svstems Design Guide. Air Force Flight Dynamics Laboratory AFFDL-TR-78-151. Wright-
Patterson AFB, OH. Irvin Industries Inc. Gardena, CA. December 1978.



can be recovered and refurbished for future launches. The SRB parachute system
consists of a drogue parachute and three main parachutes. Below, Figures 10 and 11
displays what a typical SRB looks like during descent and at splashdown.

t

Figure 10: Typical SRB Descent 16

" http://gcautain.com,-'maritime,-'blo!-/interesting-shin-week-nasa-recovery/



Figure 11: Typical SRB Splashdownl7

At the time of this analysis, Space Shuttle launches STS-1 thru STS-124 were considered
as relevant data. This set of launch data did not include STS-51L (Challenger) due to the
catastrophe suffered during Ascent. After discussions with SRB Reliability personnel, it
was noted that many upgrades had been made to the SRB parachutes over the years.
Primarily, the majority of the updates occurred prior to the Challenger accident. As a
result the SRB main parachute failure rate has decreased over the years. To account for
the decrease in failure rate, only the SRB main parachute data post-Challenger was
considered. Prior to Challenger, there were a total of twenty-five Space Shuttle launches.
Subtracting those away from the total number of launches left a total of ninety-eight
launches to assess. To get the likelihood of a single SRB main parachute, the total
number of failures, post-Challenger, was divided by the total number of demands. The
total number of demands is equates to 98 missions x 2 SRBs x 3 main parachutes per
SRB. This resulted in a total of five hundred eighty-eight demands. In order to comply
with Export Control policy, the z = total number of SRB failures in the ninety-eight
missions.

With the given data, the SRB main parachute Likelihood can be calculated by dividing
the number of failures considered, z, by the total number of demands (588). Doing so
produced a Likelihood value of 1. z/533-)per demand.

7	 Calculating the CPAS Main Parachute Prior & Posterior
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As mentioned above, the course of action to produce a failure probability for the CPAS
Main parachute was to develop a prior based on discounted-Apollo, discounted-Soyuz,
and Military data. Given the sets of data reflected demand events, the resulting prior
distribution was a Beta with a = 0.2 and,U = 82.7. The prior data and data sources are
summarized below in Figure 14.

The generic data sources:

Source	 Comments	 Failures Demands Mean Variance

Soyuz One discounted failure D.5 99 5.1E-03 5.1E-05
Apollo One discounted failure 0.1 45 2.2E-03 4.9E-05

AFFDiL-TR-78-151 Nine years of Army drops 154 96,988 1.6E-03 1.6E-08

The resuffing prior:

Distribution Mean	 Mean"	 a	 p "EF"

Beta	 2.95E-03	 339	 0.2	 82.7	 81

Figure 12: CPAS Main Parachute Prior Summary

Now that the CPAS Main parachute prior distribution has been established as a
(.0.2, 802.7) , the Beta-Binomial conjugate pair can be used to detennine the posterior

distribution. This is the same process as used in the SBT Bayesian update for the CEV
Main parachute failure probability (Section 6.1).

To re-iterate, the Beta-Binomial conjugate pair states that if the prior distribution, pr o , is a
Beta distribution with a and P as the parameters, one can Bayesian update 7, with
Likelihood data in the form of a Binomial distribution where x = total number of failures
and N = total number of trials. The resulting posterior distribution, ,T 1, is in the form of a
Beta distribution with the parameters of cr 4- x and) + N — x. The mean of 71 can be
calculated as _ (a + x) j (a + j6 + N). In this case, a = 0.2, ,u = 82.7, x = z, and N =
588.

Now with a Beta distribution as the prior, and a Binomial distribution as the Likelihood,
the posterior distribution for the CPAS main parachute can be formed as a Beta
distribution. The resulting posterior Beta distribution parameters would be a' _ .2 + z
and fl)' = 82.7 + 588 — z. The resulting mean of the posterior distribution would be
calculated as follows:

_ [(.2+z)/(.2+82.7-538)]



7.1	 Issues with the Results

As the results shown above in Figure 16 were presented to the CPAS Project, several
concerns were raised regarding the relativity of the data. Two of the four data sources
used (Military data and SRB data) utilized parachute systems that were not human-rated.
The Soyuz is considered a human-rated vehicle. However, the parachute system uses a
single main parachute as opposed to a cluster of three. However, out of all the human-
rating and configuration deltas, the largest concern was the lack of Apollo data. There
were only a total of fifteen missions, or forty-five demands. As a result of this concern,
an effort was launched to try and find all of the test data from the Apollo parachute
system. Several documents were found to have Apollo parachute test data recorded.
However, the data was recorded in such a manner, that the analysts were unable to tell
which configuration was tested and exactly what component failed during the test. To
date, CPAS engineering personnel are still attempting to find relevant Apollo parachute
test data with no success thus far.

8	 Summary

With any future, human-rated spacecraft NASA develops, finding appropriate data to
help quantify a system/sub-system/component risk will be necessary. Unfortunately, due
to the cost of human spaceflight and all of the associated testing, there will always be a
shortage of useful data. As a result, NASA will continue to use surrogate data to develop
prior distributions and initial posterior distributions. The work done to quantify the initial
CPAS main parachute has been instrumental in educating the engineering directorates
about Bayesian updating. Multiple lessons learned have also been taken from this
exercise in hope of refining the techniques for quantifying other system/sub-
system/components located on future human spaceflight vehicles.


